H=-16t^2+72t+520

Simple and best practice solution for H=-16t^2+72t+520 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2+72t+520 equation:



=-16H^2+72H+520
We move all terms to the left:
-(-16H^2+72H+520)=0
We get rid of parentheses
16H^2-72H-520=0
a = 16; b = -72; c = -520;
Δ = b2-4ac
Δ = -722-4·16·(-520)
Δ = 38464
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{38464}=\sqrt{64*601}=\sqrt{64}*\sqrt{601}=8\sqrt{601}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-8\sqrt{601}}{2*16}=\frac{72-8\sqrt{601}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+8\sqrt{601}}{2*16}=\frac{72+8\sqrt{601}}{32} $

See similar equations:

| 3x+(x+10)=45 | | 37=-3+5(x+-6) | | 22-17x=5x | | 7x=4x+108 | | (7n-4)^2-31=0 | | -16s-19=47 | | -(2w/8w-5)=(5/8w-5) | | t+12+3t=180 | | x/16-1/4=1 | | t=12=3t | | 43.76+0.10m=80 | |   43.76   +  0.10m  =     80 | | 2x-5=1/2(3x-13/2 | | 3/5x+8/3=3 | | -5(4y+1)=-85 | | 8(-2x–1)=24 | | -x+1/2=2/3 | | 4x^2-32×=0 | | -5(x-(-3))=-50 | | (6x-5)=(x+2) | | 5(20+6m)=4m+m | | 16=4-3y+7y | | (2+4)w-8=64 | | 3(4y+10)=-30 | | 5x-1x(x-18)=6-2(x+15) | | 6.6b=30 | | 8÷5=48÷x | | 54=(x+5)xX | | 72-90-1/8b=7/8b | | 4n+23=2n+13 | | 5=z⌥-4-3 | | 8x-(5-4)=49/7 |

Equations solver categories